
A XRD- A176 258 DEVELOPMENT OF RE L-TI
E SPEECH RECO NITION(U)

SON LABS 1/1
IINC CAMBRIDGE MA M A KRASNER ET AL. JAN 87 B8N-6444

N88829-85-C-B313

UNCLASFE F/6 9/2 U

II11 I 111~~ ~328

I Xi ii jh
wL .6 -

.. ,,

~'11111_!.25 1.6

I ' 111I'l

i11' ' 111 . 11

100 0

mf BBN Laboratories Incorporated
A Subsidiary of Bolt Beranek and Newman Inc.

S Report No. 6444

DEVELOPMENT OF REAL-TIME SPEECH RECOGNITION

Item 0001: Final Report

January 1987

Prepared for: ~T IC
Defense Advanced Research Projects Agency !ELCT

andCT
Space and Naval Warfare Systems Command JAN 2 9 1987

D

I±~mm p~muI87 1 28

Eli UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wen Dae Enae_

APAGE RED INSTRUCTIONSREPORT DOCUMENTATION PBEFORE COMPLETING FORM
I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TaYP. .RET ca COyEREt

DEVELOPMENT OF REAL-TIME SPEECH
i Jec1985-2 Depor

RECOGNITION 3 June 1985-2 Dec. 1986

ITEM 0001: FINAL REPORT S. PFORMING ORG. REPORT NUMBER

7. AUTHOR(eJ O. CONTRACT OR GRANT NUMBERf'S)
Michael A. Krasner, Richard Schwartz,

Owen Kimball, Lynn Cosell N00039-85-C-0313

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKBBN Laboratories Incorporated AREA A WORK, UNIT NUMBE,,S

10 Moulton St.

Cambridge, MA 02238
,,. CONTROLLING OFFIC!. NAME AND ADRESS 12. REPORT DATE

Department of the Navy January 1987
Space and Naval Warfare Systems Command 13. NUMBER OF PAGES
Washington, D.C. 20363-5100 11

14. MONITORING AGENCY NAME & ADDRESS(II different (ram Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

IS. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of the document is unlimited. It may be released
to the Clearinghouse, Dept. of Commerce, for sale to the general
public.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. If different from Report)

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide ol necesary and Identify by block number)

speech recognition, continuous speech, real-time speech processing,

parallel processing

20. ABSTRAC- (Continue an reverse side if necessry and Identify by block number)

This repor describes our work during the first phase (Item 0001) of

this contra.ct. In this phase, we have developed parallel processing techni-

ques appropriate for real-time speech recognition and demonstrated thq

feasibility of achieving real-time recognition on the BBN ButterflyTM Parallel

Processor.

The speech recognition algorithm that is the focus of this effort is

being developed for the B.N Byblos speech recognition system. The

9. DD 1473 EDITION OF I NOV65 OBSOLETEUCASDD J MAN UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Does Entered)i

UNCLASSIFIED

-- SECURITY CLASSIFICATION O Tris -%GE" rW,. Oat. E.tered)

-multiprocessor used in the research, the BH Butterfly Parallel
Processor, is a shared memory, MIMD machine. The algorithm was
implemented using the Uniform System software methodology, a system
that simplifies parallel programming without sacrificing efficiency.
The algorithm is described, highlighting those portions critical to
an efficient parallel implementation. Some of the problems encountered
in trying to improve the efficiency are presented as well as the solu-

. tions to those problems. The algorithm is shown to achieve 79% pro-
cessor utilization on a 97-node Butterfly Parallel Processor. This
is equivalent to speedup by a factor of 77 over a single processor
benchmark.

.

..

% %1

UNCLASSIFIED

5ECURITY CLASSIFICATION OF THIS PAGE (11en Del. Entered)

Il l All 11111111111

Report No. 6444

B

DEVELOPMENT OF REAL-TIME SPEECH RECOGNITION

ITEM 0001: FINAL REPORT

,'N

.S

5*. Accession For

rETTS T I

January 1987 By _

rDBist r ! ut i nn/
Ava i ilty Codes

Av'il ajnd/owr

Dist ,:pcc a,

Prepared by:

BBN Laboratories Incorporated I
10 Moulton Street
Cambridge. Massachusetts 02238 4,

Prepared for:

7 Defense Advanced Research Projects Agency
and
Space and Naval Warfare Systems Command
Computational Systems and Technology Division (SPAWAR613)
Under Contract No. N00039-85-C-0313

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the Department of the Navy, or the U.S. Government.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
under the clause at 52.227-7013.

V~. 6 * - '

Report No. 6444 BBN Laboratories Incorporated

Table of Contents

1. Executive Summary 1

2. Efficient Implementation of Continuous Speech Recognition on a Large Scale 2
Parallel Processor

3. Publications 7

-- .- .U

Report No. 6444 BBN Laboratories Incorporated

1. Executive Summary

The purpose of this effort is to develop parallel processing techniques for real-time speech recognition. This

is part of an overall program to demonstrate the utility and effectiveness of high performance speech recognition for

natural human-machine interaction.

This report describes our work during the first phase (Item 0001) of this contract. In this phase, we have

developed parallel processing techniques appropriate for real-time speech recognition and demonstrated the

feasibility of achieving real-time recognition on the BBN ButterflyTM Parallel Processor.

The speech recognition algorithm that is the focus of this effort is being developed for the BBN Byblos speech

recognition system. The multiprocessor used in the research, the BBN Butterfly Parallel Processor, is a shared

memory, MIMD machine. The algorithm was implemented using the Uniform System software methodology, a

system that simphfies parallel programming without sacrificing efficiency. The algorithm is described, highlighting

those portions critical to an efficient parallel implementation. Some of the problems encountered in trying to

improve the efficiency are presented as well as the solutions to those problems. The algorithm is shown to achieve

79% processor utilization on a 97-node Butterfly Parallel Processor. This is equivalent to a speedup by a factor of

77 over a single processor benchmark.

We are beginning the second phase iltem 0002) of the effort, during which we will develop and demonstrate a

real-time speech recognition capability within the Strategic Computing Program (SCP) Naval Battle Management

application domain. We are extending and refining the parallel processing techniques developed in the first phase of

this effort. These techniques will be applied to the implementation of a system for real-time large vocabulary

continuous speech recognition. The vocabulary and grammar to be implemented and demonstrated will be a subset

of the FRESH/CASES expert systems. The real-time system will be implemented on a BBN Butterfly Parallel

Processor.

t1

Report No. 6444 BBN Laboratories Incorporated

2. Efficient Implementation of Continuous Speech Recognition on a
Large Scale Parallel Processor

The body of this section is a paper that will be presented at the IEEE International Conference on Acoustics,

Speech, and Signal Processing, to be held in Dallas, TX on April 6-9, 1987. This paper describes the major

technical achievements of this project in a concise format that is most appropriate for dissemination of the results to

technical personnel of the Government. contractors, and other research laboratories. When published, the citation

will be:

Kimball, Owen. Lynn Cosell, Richard Schwartz, and Michael Krasner. "Efficient Implementation of
Continuous Speech Recognition on a Large Scale Parallel Processor', Proceedings of the IEEE
International Conference on Acoustics. Speech. and Signal Processing, April 6-9, 1987, Dallas, TX

N NI

Efficient Implementation of Continuous Speech Recognition

on a Large Scale Parallel Processor

Owen Kimball, Lynn Cosell,
Richard Schwartz, Michael Krasner

BBN Laboratories
10 Moulton St.

Cambridge, MA 02238

Abstract switch. The Butterfly architecture is multiple-instruction-
multiple-data-stream (MIMD). in which each processor node

This paper presents research into the use of large-scale executes its own sequence of instructions, referencing data as
parallelism for a continuous speech recognition algorithm. The specified by the instructions. Each processor node contains
algorithm, developed for the BBN Byblos system [I], uses either a Motorola MC68000 or MC68020 microprocessor, an
context dependent Hidden-Markov models to achieve high optional floating-point co-processor, from I to 4 megabytes of
recognition accuracy. The multiprocessor used in the research, main memory, a co-processor called the Processor Node
the BBN Butterfly TM Parallel Processor, is a shared memory, Controller, memory management hardware, an 1-0 bus, and an
MIMD machine. The algorithm was implemented using the interface to the Butterfly switch.
Uniform System software methodology, a system that
simplifies parallel programming without sacrificing efficiency. The Butterfly switch allows each processor to access the

* The algorithm is described, highlighting those portions critical memory on every other node. Collectively, these memories
to an efficient parallel implementation. Some of the problems form the shared memory of the machine, a single address space
encountered in trying to improve efficiency are presented as accessible to every processor. All interprocessor
well as the solutions to those problems. The algorithm is communication is performed using shared memory.
shown to achieve 79% processor utilization on a 97-node Instructions accessing memory on the same node as a processor
Butterfly Parallel Processor. This is equivalent to a speedup by typically take about 2 microseconds to complete, whereas those
a factor of 77 over a single processor benchmark.' accessing memory on another node take about 5 or 6

microseconds. Block transfers from one memory to another
run at 4 megabytes per second. The machines used in this

1. Introduction project were 16-processor and 97-processor machines, each
with 1 megabyte of memory and a MC68000 microprocessor

The introduction *of large-scale parallelism in computers on the processor nodes. Neither had hardware support for
offers the potential for greatly increased speed and better floating point arithmetic.
performance-cost ratios for algorithms that can make use of The software for the project was written using the
this parallelism. This paper describes the parallel Uniform System, a programming methodology supported by a
implementation of a continuous-speech recognition algorithm library of high-level subroutines (3]. The benefit of using the
that successfully uses the speedup provided by a general Uniform System is that it can provide a simple, efficient
purpose multiprocessor, the Butterfly Parallel Processor. solution to the problem of load balancing for the memory as

The outline of this paper is as follows: Section 2 well as for the processors. To balance the load on memory, the
describes the Butterfly Parallel Processor and the Uniform Uniform System routines spread out the data evenly across the
System, Section 3 describes the BBN word recognition different physical memories in the machine. Under the
algorithm, Section 4 explains the initial parallel assumption that distributed data will also distribute memoryimplementation of the algorithm. Section 5 describes the accesses fairly evenly, this approach can reduce the
improvements to the algorithm for better processor utilization inefficiency that results when many processors attempt to
and presents results based on these improvements. The final access the same memory simultaneously.
section presents some conclusions from the work. To balance the load on processors, the Uniform System

treats processors as a pool of identical workers, all of which
2. Butterfly and Uniform System can execute the same tasks. In this way, tasks can be

dynamically assigned to the free processors in the machine. In
The Butterfly Parallel Processor (2] is composed of a typical program, control starts out in a single processor of the

multiple (up to 256) identical nodes, each containing a machine. To perform tasks in parallel, this processor calls a
processor and memory, interconnected by a high-performance Uniform System "generator" subroutine, specifying a set of

tasks to do and' a task subroutine. The generator creates a
I'flhis work was sponsored by the Defense Advanced Research Projects descriptor of the work to be done and starts all processors. The

Agency and was monitored by the Space and Naval Warfare Systems processors then perform the work in parallel, each taking the
Command under Contract No. N00039-85-C-0313. next task data from the descriptor and executing the task
The autbon would like to thank Wiliam Crowther for his assistance on the routine with this data until all the work is completed. At that
biiay-tzee maximum aid for other informauve discussions. point, control is returned to the original single processor. An

3

example of a simple generator is GenOnl. The call 4. Initial Parallel Implementation
"GenOnl(task_routine. Nrasks)" assigns processors to perform
the subroutine "task routine" for every integer value in the As the first step toward a parallel implementation, the
range I to Ntasks. speech recognition program was ported from VAX/VMS to a

single proce-sor of the Butterfly Parallel Processor. Both
3gversions of me program were in the language 'C'. The most
3. Recognition Algorithm significant change to the program in this phase was the use ofthe Uniform System memory management routines to store in

The Byblos system has two major components, a trainer global shared memory about 1.5 megabytes of data that had
and a recognizer. The recognition component was been stored on disk in the VAX version.
implemented on the Butterfly Parallel Processor. The training
component uses the forward-backward algorithm [4] to The VAX (and the first Butterfly System implementation)
estimate discrete-density Hidden-Markov models of context- used floating-point arithmetic, but because floating-point
dependent phonemes. It combines these models to form word arithmetic is performed in software in our Butterfly Parallel
models that are used in recognition. The context-dependent Processor, it is substantially slower than fixed point. For this
models lead to accurate and robust recognition performance; reason, the program was switched to fixed-point arithmetic. As
the system has achieved 90% correct recognition on a 335 part of this change, multiplication of probabilities in the
word speaker-dependent task with no grammar [5]. original version was converted to addition of corresponding log

n c p n h zprobabilities. With this modification, the execution time was
In the recognition process. input speech is analyzed every about two minutes for a 3.5 second utterance from a 120 word

10 ms and then vector quantized with a 256-vector codebook. task. This is about the same speed as our optimized floating
The analysis and quantization are done in real time on an FPS point VAX 11(780 program.
array processor attazhed to a VAX. The quantization codes,
each representing a frame of input speech. are input in real Examination of the pseudo-code in the preceding section
time over an ethernet connection to the search algorithm on the leads to a natural decomposition of the algorithm: the
Butterfly Parallel Processor fundamental parallel task is to update the score of a single

word for a single input frame. Using the Uniform system
The search algorithm finds the best scoring sequence of generator GenOni, the pseudo-code for the parallel version of

words using the trained word models. Each possible sequence our algorithm becomes:
of words that is considered is called a word sequence theory. FOR all frames {
The search uses the Viterbi decoding algorithm to update best end score:= 0
scores for all word sequence theories at each frame. In order to max score:= 0
prevent underflow during score updating, all theory scores are Gent)nl(updateword, N-words)
normalized. To determine the "normalization factor" for a determine initial state score for new theories from best end score
frame, the algorithm computes the maximum score of all states determine normalizaton from max score
in all words in the frame and sets the factor to the score ceiling determine and report best scoring theory
minus the maximum score.

In this version, the subroutine update-word now includes
The major work being performed in the algorithm can be the calculation of maxscore and best end-score. Note that

abstracted in pseudo-code as follows: since the processor calling GenOni waits for all processors to
FOR all input frames (finish before proceeding, this mechanism provides a

max score := 0 synchronization that is needed to ensure that no processor
bestend ore := 0 begins updating words of a new frame until the initial state

update word scoe score and the normalization factor for the next frame have been
IF word max score > max-score computed.

max-score := word max sc ore
IF word end score> best end score Using this simple approach to parallel implementation, a

best end score := word-end-score first timing experiment was conducted using a 16-processor
machine and a 120-word vocabulary task. Processor utilization

determine initial state score for new theories from best end score
determine normalizaton from max score was found to be 75%, i.e. the machine was effectively using

the computation corresponding to 12 of the 16 actual
determine and report best scoring theory processors. [6]. This result was judged to be good enough to

The aproceed directly to work on a larger machine. The first time
The algorithm computes two maxima: max_score" the the program was run on a 97-processor machine, processor

maximum over all states of the words scored in an input frame, utilization was approximately 20%. Although this represents a
and "best end score', the maximum score of all words' final factor of 20 speedup of the program, it is an inefficient use of
states. The First maximum is used for the normalization factor the machine. The next section presents several factors that
mentioned above, and the second is used to determine the score contributed to the inefficiency as well as the methods used to
for the initial state of all words in the next frame. improve them.

The core of this computation, the word score update,
entails updating all the phonemes in a word. Each phoneme
update requires a little less than one millisecond of
computation, and the average word update time is slightly
more than 4 milliseconds for the vocabularies used in this
work.

4

"

Z,o)J

5. Eficenc Impove ent andResltsword-starting score. This score, however, is used only at the
5. Eficenc [mpove ent andResltsbeginning of thefirst phoneme of each word. Considering this,

There are a number of potential obstacles to attaining the order of the update of a word was reversed so that the last
efficient processor utilization on a multiprocessor. Typical phoneme was updated first, and the first phoneme updated last.
issues include contention for a common memory location,
serial code in the program, and processors waiting idly to Prc0 Time Time
synchronize with other processors. Each of the specific Po
problems described below includes one or more of these issues. I

Number of Tasks and Startup Overhead 2

Even before the program was run on a larger machine, we 3
had anticipated that it would be hard to obtain high processor 4
utilization with a vocabulary as small as 120 words. Since our
long-term goal is to recognize speech from large vocabularies,
we switched to a larger task of 335 words. This change
improved processor utilization to 35% on the 97-processor
machine. N

The speed of processor scheduling was examdied next. In
the initial parallel version shown above, the generatorSycPonSnhPit
subroutine call starts all the processors at each frame. It wasSycPonSnhPit
found that the overhead of starting up was relatively large for Unsorted Words Sorted by length
the amount of work being done itt each frame. To reduce the
overhead, the program was altered to start all processors only Figure 1: Ordering Tasks by Length
once at utterance start, generating NframnesxINords tasks at Ti hnealwdapoesrt~fns oko n rm
that point and letting each processor determine its word and ands immneiaelyobegi wror o faingsa word fom te nexte
frame indices from the single task index it receives from the animeatlbgnwoknuptngaorfomheex

genratr.Proessr tilzatonimpove t abut50% with frame, synchronizing only when it got to the first phoneme. In
ges nge.Prcsoutlzto mrvdoabt this way, time that had been previously spent by processors

this cange.waiting for others to finish a frame was now being used to
Processor Synchronization Issues perform useful work from the next frame.

The task generation change had removed the Figure 2 depicts the situation for two frames of an
synchronization provided by starting up a new generator at utterance before and after this change. Tasks for time T+l are
each frame. To replace this, an explicit synchronization was shown in two shades. The darker portion represents the part of
built into the program to be performed after all the words in a the task that depends on the previous frame's work being
frame were processed. There were two subsequent changes to finished. On the right, with the the order of the computation
improve the efficiency of synchronization. The first dealt with reversed, the idle processor time is reduced. The effect of the
task ordering. In the early versions of the algorithm, synchronization changes was to increase processor utilization
processors updated all the words in the vocabulary, with no - to approximately 72%.
particular ordering of the words. Since words have varying
mimbers of phonemes (from one to 14 phonemes in this task's
vocabulary), different words took different amounts of time to Proc Time Time
update. If a processor began work on a long word near the end/ //

of the work for a frame, other processors would finish their I 7'
assigned words and wait idly to synchronize with the one busy 2 " ' / /
processor. To reduce this inefficiency, the words were
processed in order from longest to shortest (in number of 3
phonemes). 4

In figure 1, we schematically depict the situation before
and after the words are ordered. The Filled rectangles represent . 00

time when processors actively work on tasks and the white
space represents time between tasks when no work is being
accomplished. In the right hand part of the figure, idleN
processor time is substantially reduced by sorting.N

The second change to synchronization efficiencySycPon
concerned the point in the program at which synchronization Original Order Computation Reversed
was done. As mentioned, the purpose of the synchronization r-
was to ensure that no processor proceeded to the next frame Update LJ
until the starting score for words and the normalization factor Word at
were computed. Since 'he normalization factor was only to Time T T-1 Depends on T]

avroid score underfiow, it could be estimated a frame or more Fgr :RvrigWr optto re

earlier. The only remaining synchronization constraint was the Fgr :RvrigWr optto re

% %

Finding Global Maximum 6. Conclusions

Finally, the efficiency of finding the maximum value was This work has shown that the Butterfly architecture is
also improved. A straightforward computation of the suitable for continuous speech word recognition. The
maximum value requires that all values be compared with a algorithm was implemented efficiently without changing the
single memory location, but this approach results in contention type or amount of computation performed. Some ingenuity
for that location. As a first improvement, the program was was required to obtain an efficient realization, but once the
altered to make each prcressor maintain its own local obstacles were understood, solutions presented themselves
maximum of the scores of all the words that it updates in a fairly readily. The memory and processor management

- ,' frame. At the end of the frame, the global maximum of these functions of the Uniform System made initial parallelization of
values over all processors was deterrrined. In initial versions, the algorithm quite easy and provided several alernatives for

this was accomplished by having processors sequentially improving implementation etficiency when requ aied.

! compare their value to the global location and replace it if
necessary. Although on a sixteen processor machine, the time We draw several broad conclusions about efficient

',." for processors to turn in values in this way is negligible, with parallel programming as well. Most obviously, and perhaps
97 processors, the inefficiency of the approach becomes most importantly, it is crucial that sequentially executed code
noticeable. be eliminated wherever possible. Similarly, much of the

An alternative to this approach was to set up a 'binary inefficiency in our original multiprocessor program was due totree of locations for taking the maximum. In this approach. processors waiting for each other. Synchronizing processors
the" pocesso locas formtakina the a . I this preach, only after all other possible work is done was found to be athe processors' local maxima are the leaves of the tree and the good strategy to avoid this. Additionally, it can be very
maxima are propagated up through the nodes of the tree. This important to minimize the overhead of parallel constructs such
approach reduces the asymptotic time for finding a global
maximum from O(N) to O(log N). where N is the number of
processors. More importantly in our case, efficiency improved
because memory contention was reduced.

References
The total effect of all the improvements described above

was to improve processor utilization on a 97-processor 1. Y.L. Chow. M.O. Dunham, O.A. Kimball, M.A.
machine from 20% to 79%. Figure 3 is a graph of processor Krasner, G.F. Kubala. J. Makhoul, P.J. Price.

. utilization for 1 to 97 processors on the 335 word task. The S. Roucos, and R.M. Schwartz, "BYBLOS: The BBN
actual speed of the speech recognition improved accordingly. Continuous Speech Recognition System", ICASSP,
After the optimizations are included, a one-processor Butterfly Dallas, TX, April 1987, Elsewhere in these proceedings
Parallel Processor requires 128 times real time (128 seconds to
process one second of input speech) and a 97-processor 2. R. Thomas, R. Gurwitz. J. Goodhue, and D. Allen,
machine requires about 1.7 times real time. "Butterfly Parallel Processor Overview", Tech. report,

BBN, March 1986.

"O-r 3. R. Thomas, "The Uniform System Approach to
r /Programming the Butterfly Parallel Processor'', Report

6149, BBN, June 1986.

so - 4. L.E. Baum and J.A. Eagon, "An Inequality with
Applications to Statistical Estimation for Probabilistic
Functions of Markov Processes and to a Model of

0-,/ Ecology", Amer. Math Soc. Bullettn, Vol. 73, 1967,
numBERIV pp. 360-362.

"" PR OC ESSO9R S'"C 40 ES,/ 5. Y.L. Chow, R.M. Schwartz. S. Roucos, O.A. Kimball,

P.J. Price. G.F. Kubala, M.O. Dunham. M.A. Krasner.
and J. Makhoul, "The Role of Word-Dependent
Coarticulatory Effects in a Phoneme-Based Speech

1986. pp. 1593-1596, Paper No. 30.9.1.

,_-. . . ._ 6. L.K. Cosell, O.A. Kimball. RM. Schwartz, M.A.
0 0 40 80 80 t0o Krasner. "Continuous Speech Recognition on a

NUMBER of PROCESSORS Butterfly Parallel Processor" Proceedinqs of the

International Conference on Parallel Processing,. St.
Figure 3: Butrertly Processor Utilization. 335 words Charles, Illinois, August 1986. pp. 717-720.

6

% n

-.1ApaT,2a.J A - .' ". ..

Report No. 6444 BBN Laboratories Incorporated

j 3. Publications

The following publications were pubhshed as a result of this sponsored research:

1. Kimball. Owen. Lynn Cosell, Richard Schwartz. and Michael Krasner. "Efficient Implementation of
Continuous Speech Recognition on a Large Scale Parallel Processor". Proceedings of the IEEE
International Conference on .Acoustics. Speech. and Si ,nal Processing. April 6-9. 1987. Dallas. TX.

2. Cosell. Lynn. Owen Kimball. Rchard Schwartz. and Michael Krasner. "Continuous Speech
Recoerution on the ButtertlvrM Parallel Processor". Proceedings oftthe International Conference on
Parallel Processing, August 19-22. 1986. St. Charles. IL.

3. Cosell. Lynn, Owen Kimball. Richard Schwartz. and Michael Krasner. "Implementation of Continuous
Speech Recognution on a ButterflvTM Parallel Processor'. Proceedin.gs of the DARPA Strategic
Computinig Speech Recognition Workshop, Science Apphcations International Corp. Report No.
SAIC-86/1546. February 19-20, 1986 Palo Alto. CA. pp. 60-66.

-. Krasner, Michael. "A Parallel Processing Speech Recognition Architecture on the BBN Butterfly
Multiprocessor". Proceedings of the National Radio Science Meeting, Natonal Academies of Science
and Engineering. January 13-16 1986. Boulder. CO, p. 139.

1.N

7

- -. . " *' . '. '.. . .. "'. "' .'.' -" " . - . -" . ""

-'p

N
N

A

